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Taking Time (and Space) Seriously: How Scholars Falsely 
Infer Policy Diffusion from Model Misspecification

Cody A. Drolc , Christopher Gandrud , and Laron K. Williams

Scholars have long been interested in how policies and ideas spread from one observation to another. 
Yet, the spatial and temporal dynamics of policy diffusion present unique challenges that empirical 
researchers often neglect. Scholars often use temporally lagged spatial lags (TLSL)—such as the number 
(or percentage) of prior adopters in a neighborhood—to test various mechanisms of delayed policy 
diffusion but are largely unaware of two under appreciated issues. First, the effects are not limited 
to one time period but persist over time by changing the future value of neighboring observations. 
Second, minor, yet common, choices in model specification—such as omitting spatially correlated and/
or autoregressive covariates—can increase the risk of falsely inferring that the outcome is a result of 
spatial diffusion. Indeed, we offer two applications where small changes to the model specification 
of an otherwise well-specified model result in drastically different inferences about policy diffusion. 
We argue that scholars should avoid haphazardly including TLSLs without considerable theoretical 
justification, and we conclude on an optimistic note by offering straightforward solutions and new 
software to address these issues.
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长期以来，学者都对政策和观点如何从一个观察数据扩散到另一个表示兴趣。然而，政

策扩散的时空动态所呈现的独特挑战却是实证研究者经常所忽略的。学者常使用随时间滞后

而变化的空间滞后模型（TLSL）—例如某个邻区中先前采纳者的数量（或百分比）—来测

试滞后政策扩散的不同机制，但学者在很大程度上没有意识到两个被轻视的问题。第一，效

果不限于一个时间阶段，而是通过改变相邻观测数据的终值，随时间推移继续发挥作用。第

二，模型设定中小众但常见的选择—例如省略与空间相关的和/或自回归的协变量—能增加错

误推断的风险，这个错误推断即：结果是由空间扩散导致的。的确，我们提出两种（模型）

应用，其中另一个设定完整的模型会因为模型设定发生的细小变化而导致极为不同的政策扩

散推断。我们主张，学者应避免在没有充足理论依据的情况下无计划地应用TLSLs。我们的结

论通过提出用于应对这些问题的简易解决措施和新的软件，传达了一个积极的信息。

关键词: 政策扩散, 空间计量经济学, 模型设定

Los académicos llevan mucho tiempo interesados en cómo las políticas e ideas se propagan 
de una observación a otra. Sin embargo, la dinámica espacial y temporal de la difusión de 
políticas presenta desafíos únicos que los investigadores empíricos a menudo descuidan. 
Los académicos a menudo usan retrasos espaciales temporalmente retrasados (TLSL), como 
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el número (o porcentaje) de adoptantes anteriores en un vecindario, para probar varios 
mecanismos de difusión diferida de políticas, pero desconocen en gran medida dos problemas 
poco apreciados. Primero, los efectos no se limitan a un período de tiempo, sino que persisten 
en el tiempo al cambiar el valor futuro de las observaciones vecinas. En segundo lugar, las 
elecciones menores, aunque comunes, en la especificación del modelo, como la omisión de 
covariables espacialmente correlacionadas y/o autorregresivas, pueden aumentar el riesgo de 
inferir falsamente que el resultado es el resultado de la difusión espacial. De hecho, ofrecemos 
dos aplicaciones en las que pequeños cambios en la especificación del modelo de un modelo 
que de otro modo estaría bien especificado dan como resultado inferencias drásticamente 
diferentes sobre la difusión de políticas. Argumentamos que los académicos deben evitar 
incluir TLSL de manera fortuita sin una justificación teórica considerable, y concluimos con 
una nota optimista ofreciendo soluciones directas y un nuevo software para abordar estos 
problemas.

PALABRAS CLAVE: difusión de políticas, econometría espacial, especificación del modelo

Introduction

A common theme explored by scholars of public policy, international relations, 
and comparative politics is how policies spread from one government (e.g., country, 
state, county, city) to another (Gilardi, 2016; Graham, Shipan, & Volden, 2013; Shipan 
& Volden, 2012). Policy diffusion generally occurs through four primary mecha-
nisms: learning, emulation, competition, and coercion (Graham et al., 2013). These 
mechanisms have been extensively tested in a variety of contexts including adoption 
of anti-smoking policies (Shipan & Volden, 2006, 2008), cigarette tax changes (Davis 
& Nicholson-Crotty, 2016), minimum wage increase (Whitaker, Herian, Larimer, & 
Lang, 2012), driving under the influence ignition (DUI) interlock laws (Sylvester & 
Haider-Markel, 2016), and border agreements (Clay & Owsiak, 2016). In general, 
these studies build on the classic view of diffusion that presumes similarity can 
be inferred from geography (Walker, 1969). Under this extensively tested perspec-
tive, geographically proximate governments learn, emulate, and compete with one 
another, driving policy change. Although geographic proximity dominates theories 
and empirical examinations of diffusion, policies and their features can spread across 
any connected network. Governments, for example, can learn from and emulate 
ideologically similar governments although they may not be geographically close 
(Desmarais, Harden, & Boehmke, 2015; Grossback, Nicholson-Crotty, & Peterson, 
2004; Mallinson, 2019). In this way, the mechanisms of diffusion are implicitly spa-
tial, but space encompasses more than geographic proximity (Beck, Gleditsch, & 
Beardsley, 2006).

In diffusion research, scholars often use the proportion of neighbors (geo-
graphic, ideological, economic) that previously adopted a policy to test the delayed 
effects of learning, emulation, or competition (Maggetti & Gilardi, 2016). This vari-
able is what we call a temporally lagged spatial lag (TLSL), or the weighted sum 
(or average) of neighboring governments’ outcomes in the previous period, and is 
intended to capture those processes where spatial diffusion occurs with a temporal 
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lag. Although the mechanisms of diffusion are often tested and conceived of in spa-
tial terms, scholars have yet to fully leverage and carefully consider the effects of 
space. Given a spatial process, certain assumptions about the data must match theo-
retical expectations in order to draw proper empirical inferences about policy diffu-
sion. We build on recent methodological work that recognizes the spatial dimension 
of policy diffusion (Mitchell, 2018) by broadening the notion of space and carefully 
considering the effects of time. Just as deBoef and Keele (2008) offer guidelines for 
deriving inferences from time series data in their piece “Taking Time Seriously,” we 
offer guidelines for specifying and interpreting models in the context of time and 
space.

We highlight two challenges that scholars face when using TLSLs. First, models 
with TLSLs present unique interpretive challenges because the spatial effects oper-
ate with a temporal lag. Scholars use TLSLs because their theories suggest that space 
matters for these outcomes, so it stands to reason that the effects of all the variables 
occur immediately and spatially with a temporal lag. As such, the coefficients them-
selves only represent the short-term direct effect on each observation. The true total 
effect of a variable is the sum of that short-term direct effect, and a spatial long-
term effect (SLTE) that operates through the TLSL. Under typical conditions of pol-
icy diffusion (i.e., positive spatial dependence), this means that scholars who only 
interpret the coefficients are understating the true effects of explanatory variables 
by neglecting SLTEs. To aid the interpretation of diffusion models, we demonstrate 
how to calculate SLTE, as well as summary statistics that detail the average direct 
and indirect effects.

Second, improper use of TLSLs may lead to false inferences about the explana-
tory variables and the diffusion process itself. We offer evidence from Monte Carlo 
simulations showing how substantive conclusions change when models include 
irrelevant TLSLs that are not part of the data-generating process. When there are 
omitted autocorrelated and/or spatially clustered covariates—conditions endemic 
to the study of political phenomenon—the false identification rate of irrelevant 
TLSLs is much higher than expected.1  Put simply, common errors in model spec-
ification are suggestive of patterns of policy diffusion that are not present (see also 
Boehmke, 2009a). In our experimental conditions, the false discovery rate ranges 
from 28 percent when an autoregressive covariate is missing to nearly 50 percent 
when a spatially clustered covariate is omitted. Excluding either an autoregressive 
or spatially clustered covariate leaves researchers at a high risk of discovering a 
spurious TLSL and thus incorrectly inferring the existence of a diffusion process. 
In doing so, we contribute to the rich literature that examines the consequences of 
incorrectly specifying models where temporal dynamics matter (Achen, 2000; Keele 
& Kelly, 2006).

We find evidence that these problems are widespread in the study of policy 
diffusion. Based on a survey of over 100 quantitative policy diffusion articles pub-
lished from 2000 to early 2017, we identified several patterns regarding the use of 
TLSLs. The most concerning patterns were the lack of theoretical justification for 
including TLSLs, failure to account for temporal dependence, sporadic use of a priori 
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diagnostics of spatial clustering to justify their inclusion, and a failure to explore 
spatial effects.

We offer a series of guidelines to avoid these problems: first, scholars should 
lean heavily on theory to eliminate alternative pathways that might otherwise cause 
a spurious policy diffusion effect, and second, scholars should conduct appropriate 
specification tests. In terms of the TLSL, we advocate testing for evidence of spatial 
clustering prior to specifying a model using standard tests such as Moran’s I. If diag-
nostics consistently indicate the presence of spatial clustering, then researchers are 
justified in their inclusion of the TLSL. To this end, we introduce a package in R (R 
Core Team, 2019), called spatialWeights, that automates the creation of weights 
matrices and executes the Moran’s I test for time series cross-sectional (TSCS) data. 
Finally, we use three real-world data examples to demonstrate that small and seem-
ingly innocuous changes to an otherwise well-specified model can provide evidence 
of a diffusion process that does not exist.

Two Pictures of Spatial Diffusion

Policy diffusion scholars recognize that policymakers take cues from other 
governments when considering policy adoptions, innovations, or retrenchments. 
Walker’s (1969) argument that policymakers look to “similar” governments perme-
ates theories and empirical examinations of how policies move from one govern-
ment to another. Geographic contiguity often acts as a proxy for similarity between 
governments. In this way, the physical space occupied by neighboring governments 
influences policy contagion. Although the exact diffusion mechanism can be dif-
ficult to disentangle, geographic proximity is often used to provide evidence for 
learning, emulation, or competition (Boehmke & Witmer, 2004; Maggetti & Gilardi, 
2016; Volden, 2006; Weyland, 2005).

Attempts to explore the mechanisms by which policy diffuses across govern-
ments typically fall into one of two empirical approaches, which lead to two pictures 
of spatial diffusion. The first empirical approach uses event history analysis (EHA) 
to model the probability of some event occurring (typically either the adoption of a 
policy or policy convergence), given that it has not occurred up to that point (Berry 
& Berry, 1990). The dyadic component of EHA shifts the level of analysis from obser-
vations to pairs of observations, or pairs of senders (sources) and receivers (targets) 
(see Boehmke, 2009b; Gilardi, 2010; Gilardi & Fuglister, 2008; Volden, 2006). Dyadic 
EHA is appealing because it offers the possibility of exploring how characteristics of 
both governments, as well as how they relate to each other (in terms of similarities 
or differences), influence policy diffusion (Volden, 2006). While the discrete depen-
dent variable lends itself well to measuring joint adoption of policies, dyadic EHA 
has been generalized to include any type of “increased similarity” between govern-
ments (Gilardi & Fuglister, 2008, p. 415).2  This approach allows scholars to identify 
similar observations (or neighbors) in a variety of ways to assess how governments 
learn from and emulate each other. Overall, this approach improves upon prior 
studies of policy adoption because it offers “a vastly richer specification of the diffu-
sion process between pairs of states and, consequently, a more precise comparison 
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of the role of external forces with internal political and demographic characteristics” 
(Boehmke, 2009b, p. 1125).

The second empirical approach uses spatial econometric models to explicitly 
model how political, social, and economic processes diffuse across a network (Beck 
et al., 2006; Darmofal, 2015; Franzese & Hays, 2007; Ward & Gleditsch, 2008). To 
date, two prominent models dominate these spatial diffusion projects: the spatial 
autoregressive (SAR) and the spatial-X (SLX) models. As we demonstrate below, 
the difference in models is based on whether the outcome in one observation, yi, 
responds to the outcomes in neighboring observations, yj (SAR), or to covariates 
in neighboring observations, xj (SLX; Cook, Hays, & Franzese, 2015). Diffusion in 
the SAR model occurs simultaneously and endogenously throughout all neighbors 
in the system; diffusion in the SLX model (via TLSLs) occurs with a user-specified 
temporal lag, one order of neighbors at a time. These notable differences across spa-
tial models are often confused in studies of policy diffusion, so it is worth exploring 
them in more detail.

First, consider the SAR model in matrix form shown in equation (1):

where X is an N × k matrix of k−1 independent variables and a constant, y is the 
outcome vector, ρ is the strength of spatial autocorrelation, W is an N × N matrix 
detailing how all N observations are connected to each other, and ϵ is a normally 
distributed error term with mean zero and constant variance (Darmofal, 2015, 
p. 97).3  There are two features of the SAR model that shape inferences about pro-
cesses of spatial diffusion. The first feature is that the outcomes in all observations 
are endogenous (because y is on both sides of equation [1]). As a result, we need to 
use the reduced form of equation (1) where I is an N × N identity matrix:4 

When we calculate the effects of x on y, we calculate the partial derivatives 
matrix (LeSage & Pace, 2009; Whitten, Williams, & Wimpy, forthcoming):

and its infinite series expansion:

From equation (4), the second feature of the SAR becomes clear. A change in xi 
for any non-isolate observation will influence its own outcome, yi, by β, its first-or-
der neighbors, yj, by βρW, its second-order neighbors, yk, by βρ2W2, and so on, and 
all non-isolate observations experience the impact. Thus, spatial diffusion processes 

(1)y = Xβ + �Wy + ϵ
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in the SAR model occur simultaneously and endogenously via local (i.e., first-order) 
and global (i.e., higher-order and feedback) effects. In a scenario with changing tax 
rates, this picture of diffusion assumes that neighboring governments observe and 
adopt changes concurrently. Hence, it may not be appropriate for theories requiring a 
temporal delay between when the potential adopters observe the actions of neighbors 
and when they act.

Now, consider the SLX model in matrix form shown in equation (5):

where y and X are defined above, Z is an N × k matrix of variables whose values 
influence y in neighboring observations (determined by W). � represents the direct 
effect of changes in xi on yi while � represents the indirect effect of xj on yi. The X and 
Z matrices do not have to be identical; a variable can have a direct effect on y (and 
be in X) but not an indirect effect (Z), the reverse, or both.5  The W is intended to cap-
ture the influence of neighboring governments but is not limited to geographically 
contiguous or proximate observations (Shipan & Volden, 2012). For example, inter-
dependence or connectivity between governments can be defined in terms of ideol-
ogy (Grossback et al., 2004), trade (Shipan & Volden, 2008), or commuters (Gilardi & 
Wasserfallen, 2016).

A common empirical strategy is to use the lagged proportion of previous 
adopters overall or in a government’s neighborhood (Berry & Berry, 1990; Fay & 
Wenger, 2016; Sylvester & Haider-Markel, 2016; Whitaker et al., 2012) to test spatial 
diffusion effects that occur with a temporal lag. TLSLs are useful for understand-
ing diffusion processes because they can take the form of discrete or continuous 
outcomes like the adoption of a particular tax or convergence in the generosity 
of welfare payments (e.g., Berry, Fording, & Hanson, 2003; Davis & Nicholson-
Crotty, 2016; Gilardi & Wasserfallen, 2016; Plümper, Troeger, & Winner, 2009). 
As an example, take three neighboring governments and the diffusion of income 
tax rates. When we consider discrete changes to the policy, equation (6) decom-
poses the commonly used lagged proportion of previous adopters into a simple 
un-row-standardized contiguity weights matrix, W, where government 2 (second 
row and column) and 3 (third row and column) are neighbors with 1 (first row and 
column) and the adopters at t−1 are given by a column vector. For a contiguity 
weights matrix, 1 on the off-diagonal represents a connection. In this example, 
governments 2 and 3 changed their income tax policies in the previous period. The 
resulting TLSL (column vector on the far right) shows that the first government 
has two neighbors that adopted the tax while the other two governments have 
none.

(5)y = X� + �WZ + ϵ

(6)x = Wyt−1=

⎛⎜⎜⎜⎝

0 1 1

1 0 0

1 0 0

⎞⎟⎟⎟⎠
×

⎛⎜⎜⎜⎝

0

1

1

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

2

0

0

⎞⎟⎟⎟⎠
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The same logic applies to convergence in the income tax rate. In equation (7), we 
change the values of the column vector to represent each government’s income tax 
rate at t−1 where state 1 has no income tax. Once we multiply through, the TLSL 
is the weighted sum of the neighbors’ tax rates for each government. For example, 
the weighted sum for the first government is 5 (based on its two neighbors’ rates of 
3 and 2), while the weighted sum for the other two government is 0 (because both 
governments are only neighbors with the first government, which did not have an 
income tax).

An alternative specification choice is to row-standardize the W.6  Dividing each 
element of W by its row total (which forces each row to sum to 1) changes the value 
of Wyt−1 in equations (6) and (7) to be the weighted average of previous adopters and 
tax rates, respectively. Moreover, these simple examples rely on a contiguity weights 
matrix, but researchers can easily define W using any theoretically motivated inter-
connectivity criterion. In fact, scholars can test theories of diffusion through multiple 
avenues by including additional TLSLs. For example, geographically close govern-
ments may compete with one another to attract workers, and ideologically similar 
governments may emulate tax structures. In this case, the first W could be defined 
by geographical proximity and the second W could be defined using a measure of 
governments’ ideological similarity. Both matrices would weight the tax rates at t−1 
in each government’s neighborhood but test different diffusion pathways. Using 
theoretically motivated weights matrices allows scholars to define neighbors in a 
variety of ways and avoid inferential problems associated with incorrectly specify-
ing the mechanisms of policy diffusion.7 

Models including TLSLs—such as the weighted sum or average of previous 
adopters—therefore fall into the broader set of SLX models (LeSage & Pace, 2009, 
p. 192; Williams, 2015; Wimpy, Williams, & Whitten, forthcoming), where the Wyt−1 
vector contains the spatial lag of neighboring observations from the previous 
period, or

This model specification offers a picture of diffusion that occurs with a tem-
poral lag, influencing first-order neighbors at time t  +  1, second-order neighbors 
at time t + 2, and so on. In the context of income tax rates, a change in government 
i influences the rates in their neighbors j at time t + 1, but the effects propagate to 
higher-order (the neighbors of government j) neighbors as time elapses. Both spatial 
models produce global effects; the SLX model captures this delay through the TLSL 
whereas the SAR model forces the diffusion process to occur all at time t. Theories of 
diffusion may suggest that the former approach is how the policy process operates 

(7)x = Wyt−1=

⎛
⎜⎜⎜⎝

0 1 1

1 0 0
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⎞
⎟⎟⎟⎠
×

⎛
⎜⎜⎜⎝

0

3

2

⎞
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=

⎛
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0

0
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(8)y = X�+�Wyt−1+ϵ
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with governments looking to the actions of neighbors and then responding with 
a delay (e.g., Berry & Berry, 1990; Böhmelt & Freyburg, 2015; Brooks, Cunha, & 
Mosley, 2015; Rogers, 2004).

For all the similarities of dyadic EHA and spatial models, the two empiri-
cal approaches have two surface-level differences and a larger, more substantive 
difference. Given that both approaches attempt to model how policies diffuse 
across governments, theoretical considerations are particularly useful in illumi-
nating the appropriate modeling choice. At first, the biggest difference between 
approaches would appear to be the level of analysis; while spatial econometric 
models typically analyze governments, dyadic EHA analyzes pairs of govern-
ments. This difference, however, is somewhat superficial because there is nothing 
preventing scholars from using spatial models on directed dyadic datasets. In fact, 
Neumayer and Plümper (2010) show that directed dyadic data allow scholars to 
modify weights matrices to derive inferences about contagion across sources and 
targets. The second surface-level difference focuses on the outcome of interest; 
while dyadic EHA analyzes a binary event (such as mutual adoption or increased 
similarity), spatial econometric models typically analyze continuous events (such 
as tax rates). This difference is also a misconception, because recent advances in 
spatial econometric models have expanded into discrete, categorical, and count 
outcomes (Darmofal, 2015). The SLX in particular is quite flexible because its sole 
requirement is that the model must include an exogenous spatial lag (such as 
the proportion of previous adopters). Prominent diffusion examples abound of 
SLX variants of continuous models (e.g., Case, Rosen, & Hines, 1993), event count 
models (e.g., Boehmke & Witmer, 2004), and EHA models (e.g., Berry & Berry, 
1990; Grossback et al., 2004).

The substantive difference between these two empirical approaches arises in 
the picture of spatial policy diffusion that they depict. The dyadic EHA model 
examines pairs in isolation; if a variable (for example, previous policy success in 
government A) has a positive coefficient, then we can infer that policy success 
in government A influences the probability of the event to the same extent in all 
pairs. Since the connections between all governments (W in the spatial models) 
are ignored in favor of dyadic connections, a significant predictor will influence 
all pairs of governments similarly, regardless of the number of other neighbors or 
the strength of those connections. It might be the case that having more neighbors 
increases the degree to which an observation is influenced by other observations; it 
is also possible that the effect of one observation on another declines as the number 
of neighbors increases. This is a question that is best answered with theory,8  but the 
dyadic EHA imposes the former on the diffusion process. Furthermore, in a dyadic 
EHA model, the effects of some characteristic in government A only influence the 
similarity of governments A and B; in a spatial econometric model, the effects of a 
characteristic in government A go beyond the local or first-order effects of influenc-
ing government B to include higher-order and feedback effects (though the SAR 
and SLX differ over the temporal sequence of these effects). These two empirical 
approaches clearly offer different pictures of spatial diffusion; so, it is critical to 
have theory guide these choices.
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With these differences in mind, we focus our efforts on exploring issues related 
to model specification and interpretation in spatial econometric models with TLSLs 
and continuous outcomes.

Quantities of Interest in the Context of TLSLs

Even though scholars have used TLSLs (and SLX models more broadly) to test 
theories of delayed diffusion processes, scholars have yet to fully appreciate that this 
feature changes the inferences they draw about diffusion processes. To see how this 
complicates interpretation, assume that we have a simple model employing a TLSL 
(equation [8]). The short-term direct effect of Xt on yt for all i observations is ∆yt|Xt 
= β. Each covariate also has a spatial long-term effect (SLTE) that arises through chang-
ing the values of yt, which then influences yt+1, and so on, through θW. The spatial 
long-term effect relies on the effect size (β), the strength of the temporally  lagged 
diffusion parameter (θ), and the spatial distribution of observations (W). Exploring 
the SLTE allows us to better understand this process so that the empirical results 
shed light on the theoretical expectations.

Consider a model of income tax rates with the weighted sum of neighbors’ tax 
rates as a control variable.9  We calculate the spatial long-term effects of a covari-
ate, say citizen ideology, on income tax rates based on the following illustration: 
First assume the coefficient for citizen ideology is β = 1 and the coefficient for the 
weighted average tax rate is θ  =  0.25, and that the governments are connected 
through an un-row-standardized contiguity weights matrix (where governments 2 
and 3 are neighbors with 1):

In general, we calculate the value of y at any time, t + s, based on the change in 
the previous period, t + s−1:

For example, the change in y at time t + 1 given an increase in Xt, or ∆yt+1|Xt.

If we substitute Xβ for ∆yt|Xt, we get the following change for time t + 1:

A 1-unit increase in X results in an N × N matrix (consistent with the partial 
derivatives interpretation approach; see LeSage & Pace, 2009; Whitten et al., forth-
coming) with the following values:

(9)W =

⎛⎜⎜⎜⎝

0 1 1

1 0 0

1 0 0

⎞⎟⎟⎟⎠
.

(10)Δyt+s|Xt=�W
(
Δyt+s−1|Xt

)

(11)Δyt+1|Xt=�WΔyt|Xt

(12)Δyt+1|Xt=�WX�
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The partial derivatives matrix provides the complete effects—including direct 
and indirect effects—of X on yt+1 for every single observation in the data. The values 
along the diagonal provide the direct effect (or feedback effect) of a change in Xt on 
yt+1 for each government. Since the diagonal of W contains only 0s, by construction, 
there are no feedback effects at time t + 1. The values along the off-diagonal pro-
vide the indirect effects of changes in one government on other governments. For 
example, the values in the first column (going from top row to bottom) represent the 
effects of increasing X1,t by 1-unit on itself (0), government 2 (0.25), and government 
3 (0.25). It is easy to see that the effect at time t + 1 on any neighbor is θwijXβ.

Because of the inclusion of a TLSL in the model specification, the change in Xi,t 
has a spatial long-term effect that declines with t. At each additional time period, we 
calculate the effect by incorporating the change in y from the previous period. For 
example, the effects at time t + 2 are calculated by substituting θWXβ for ∆yt+s−1|Xt 
in equation (10):

The direct effects along the diagonal of equation (14) show that each government 
gets additional feedback due to changing its neighbors’ values of yt+1; government 1 
has the largest effect because it has two neighbors while governments 2 and 3 only 
have one. At each value of t, we can calculate the total effects of Xt on y by summing 
the row values in each partial derivatives matrix. For example, the total effect of Xt 
on yt+2 is 0.125 for each government.

The formula for the spatial long-term effects in the third period, ∆yt+3|Xt = 
θW(θW(θWXβ)), demonstrates that the effects decline with each additional time 
period. The spatial long-term effect for periods t + 1 to t + S therefore simplifies to 
the following:

Thus, while the short-term direct effect of a change in Xt for observation 
i is β, the long-term spatial effect on all observations can be found in the partial 

(13)Δyt+1�Xt=�WX�=

�
�E

�
yt+1

�
�Xt,1

…
�E

�
yt+1

�
�Xt,N

�
=

⎛
⎜⎜⎜⎝

0 0.25 0.25

0.25 0 0

0.25 0 0

⎞
⎟⎟⎟⎠
.

(14)

Δyt+2�Xt=�W(�WX�) =

⎛
⎜⎜⎜⎝

0 0.25 0.25

0.25 0 0

0.25 0 0

⎞
⎟⎟⎟⎠
×

⎛
⎜⎜⎜⎝

0 0.25 0.25

0.25 0 0

0.25 0 0

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝

0.125 0 0

0 0.0625 0.0625

0 0.0625 0.0625

⎞⎟⎟⎟⎠
.

(15)SLTE=
∑S

s
�W

(
Δyt+s−1|Xt

)
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derivatives matrix in equation (15). Note that the partial derivatives matrix depicts 
the direct and indirect effects for all N observations in the data. Since this matrix 
becomes unwieldy at high values of N, we offer three variations of summary mea-
sures suggested in LeSage and Pace (2009). The average total spatial long-term effect 

(AT-SLTE) is 
∑J

j

∑I
iSLTE

N
 and summarizes the average total effect of a 1-unit change 

in Xt on y. The average direct spatial long-term effect (AD-SLTE) is trace(SLTE)
N

, and 
the average indirect spatial long-term effect (AI-SLTE) is AT-SLTE minus AD-SLTE. 
The latter two summary measures give an average of how much a change in each 
government affects itself (through feedback) and other governments, respectively. 
Since all of these quantities of interest are based on estimates, we would encourage 
scholars to provide measures of uncertainty (such as confidence intervals derived 
from simulation methods) to aid in their hypothesis tests (Carsey & Harden, 2013; 
Whitten et al., forthcoming).

Now, consider the typical approach to interpreting effects in models with TLSLs, 
as demonstrated by Brooks and Kurtz (2012). In this study, the authors examine 
the diffusion of capital account policy liberalization through a variety of diffusion 
pathways including geographic neighborhoods. While they theorize about the spa-
tial and temporal nature of diffusion processes, their interpretations are limited to 
the reported coefficients and not the long-term or spatial effects. Yet, we know from 
decades of policy diffusion research that these effects last beyond time t and instead 
linger over time (Gilardi, 2016; Maggetti & Gilardi, 2016; Rogers, 2004; Shipan & 
Volden, 2012). By calculating SLTE with the partial derivatives approach, scholars 
have access to a wider variety of information about the effects of covariates on spa-
tial policy diffusion over time. If one’s substantive focus is on a particular subset 
of governments (as in a neighborhood or region), then this interpretation approach 
generates meaningful effects that reflect the distinct patterns of connections. If 
one’s substantive focus is on the average effects overall, then the summary statistics 
described above represent an accurate picture of the effects of covariates. Whatever 
one’s objective in interpretation, the SLTE reflects how policy diffuses to other gov-
ernments over time.

Common Practices in TLSL Model Specification

In order to get a sense of common modeling practices, we conducted a survey of 
all Web of Science political science citations from 2000 to early 2017 mentioning “pol-
icy diffusion.” We identified 226 articles addressing policy diffusion, of which 105 
were quantitative and modeled a diffusion process (i.e., learning, emulation, com-
petition, or coercion). These citations include observational studies of the American 
states, diffusion in other federal systems, and international policy diffusion. Overall, 
TLSLs are quite common, as nearly 65 percent of studies use some form of a TLSL to 
model a diffusion process or to control for neighborhood effects. We summarize the 
results of this survey for articles using a TLSL (N = 68) in Table 1.

We identified five patterns concerning the use of TLSLs that, when viewed 
together, raise serious concerns about their effectiveness in helping scholars make 
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accurate inferences. First, theoretical or methodological justifications for includ-
ing the TLSL are sparse. “Common practice” or “traditional fashion” in diffusion 
studies are popular justifications for including the TLSL (e.g., Fay & Wenger, 2016; 
Karch, Nicholson-Crotty, Woods, & Bowman, 2016; Makse & Volden, 2011). There 
are some notable exceptions, however, of scholars who connect the model to theoret-
ical expectations, especially in cases of policy learning and emulation where adop-
tions by neighbors partially determine subsequent adoptions. Jacob, Scherpereel, 
and Adams (2014), for example, explain that the TLSL is appropriate because diffu-
sion takes time to occur and reduces endogeneity concerns as it has a strict temporal 
order (see also Böhmelt, Ezrow, Lehrer, & Ward, 2016; Butz, Fix, & Mitchell, 2015; 
Sugiyama, 2008).

Second, a concerning number of scholars do not properly account for temporal 
dependence or autocorrelation. In studies of diffusion—and indeed, most studies of 
political phenomena—outcomes in one period depend heavily on outcomes in prior 
periods. Yet, more than 29 percent of studies using a TLSL did not address temporal 
dependence. Third, few articles provide a priori diagnostics for spatial autocorrela-
tion before including a TLSL in their model.10  In our survey, only 7.4 percent of arti-
cles with a TLSL reported spatial autocorrelation tests such as Moran’s I or Geary’s 
c. Without testing for spatial autocorrelation first, some may improperly include a 
TLSL when other measures are more appropriate. An exception is Callen (2011), who 
conducts Moran’s I tests at multiple time periods to ensure the entire series exhibits 
spatial autocorrelation.

Fourth, few studies demonstrate how the effects diffuse across space and/or 
erode over time (see Böhmelt et al., 2016; Böhmelt & Freyburg, 2015; Lopez-Cariboni 
& Cao, 2015; Rogers, 2004). In models with TLSLs, the long-term effect of a change 
in Xi,t decays with t. Yet, most studies only explore the immediate impact of the TLSL. 
Brooks et al. (2015) is a notable exception that follows the procedure outlined by 
Williams and Whitten (2012) to plot the long-term impact of peer diffusion. Doing 
so demonstrates the rapid decay of the diffusion effect due to a hypothetical price 
shock in one country as it spreads to its peers, an effect that cannot be captured by 
solely examining the TLSL coefficient.

Fifth, scholars often confuse the TLSL specification with SAR. The confusion 
is evident by incorrect model notation. Since TLSLs are exogenous to the outcome 
at time t, these models should reflect the notation from SLX (θWyt−1) rather than 

Table 1.  Summary of Policy Diffusion Survey

  Yes (%) No (%)

Among articles studying policy diffusion (N = 105)    
Use TLSL 64.8 35.2

Among articles with a TLSL (N = 68)    
Theoretical or methodological justification 36.8 63.2
Address temporal dependence 70.6 29.4
Spatial autocorrelation diagnostics 7.4 92.6
Spatial long-term effects 5.9 94.1
Incorrect notation 27.9 72.1



Drolc/Gandrud/Williams: Taking Time (and Space) Seriously� 13

SAR (ρWy). Of those estimating a TLSL, the term is often reported as ρWyt−1 (e.g., 
Cao, 2010; Jordana, Levi-Faur, & Marin, 2011; Linos, 2011). As a consequence of this 
notational confusion, among the authors that estimate a TLSL (with no concurrent 
spatial lag, or ρWy), nearly 28 percent incorrectly refer to their specification as SAR 
or m-STAR. This is a problem that extends beyond simple notational consistency 
and results in confusion about whether the spatial processes are simultaneous (SAR) 
or delayed (SLX).

Spurious Temporally Lagged Spatial Lags

Of the two spatial diffusion processes highlighted above, including a TLSL is ap-
propriate when theory suggests that policy diffusion occurs with a temporal lag. We 
illustrate this assumed relationship between a TLSL and the outcome by the directed 
acyclic graph (DAG) shown in Figure 1a. The TLSL, denoted by Wyt−1, has an effect 
on the outcome yt based on θ. Unfortunately, there are a number of causal pathways 
that could result in a spurious TLSL that is not part of a process generating yt. In 
these circumstances, a slight error in model specification might lead to an incorrect 
conclusion regarding temporally lagged spatial diffusion. In this section, we lay out 
a number of these common pathways (Figure 1b–e) to demonstrate the inferential 
risks associated with including irrelevant TLSLs.

Figure 1b shows that the effect of an autoregressive covariate x starting from 
time t−2 on yt. yt is impacted by xt−1 via the latter’s effect on xt. This is represented 
by an autoregressive parameter � shared across all x of x. xt−1 also affects the TLSL 
via its impact on yt−1. Figure 1c shows how spatial clustering in the previous period 
yt−1 represented by a weights matrix W and non–spatially clustered component z 
impact xt via a parameter θ. xt in turn impacts yt. A TLSL created with the same 
matrix would share characteristics of xt without being part of the data-generating 
process (DGP) for yt. It does so through both the W and the effect of xt−1 on yt−1 
which is related to Wz via θ. Figure 1d shows the spurious relationship between a 
TLSL and yt when the dependent variable is autoregressive. �yt−1 affects yt, which 
also is part of the TLSL. �yt−2 then affects yt−1. Finally, Figure 1e shows a DGP with 
both a spatially clustered covariate yt−1 and an autoregressive dependent variable. 
This creates a spurious TLSL via sharing a weighting matrix and with xt, the θ effect 
of the matrix on xt−1, and the autoregressive effect of yt−2 on yt−1.

The last four causal pathways present risks that scholars would find false evi-
dence of temporally lagged diffusion as a result of errors in model specification. In 
the next section, we provide a series of Monte Carlo experiments to determine how 
model misspecification in the context of TLSLs influences inferences about policy 
diffusion.

Monte Carlo Experiments

Our goal in this section is to determine the consequences of including an irrele-
vant TLSL—i.e., one that is not part of the data-generating process—in linear regres-
sion models. The following Monte Carlo experiments explore if and to what extent 
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including an unnecessary TLSL can lead to incorrect inferences about policy diffu-
sion. We generate data to simulate the five causal pathways depicted in Figure 1. For 
each scenario, we estimate a model where the true data-generating process (shown 
in Table 2) does not include a temporally lagged diffusion process. We then assess 
the percentage of simulations where scholars would falsely conclude that a spatial 
diffusion process shapes the outcome.

Figure 1.  Directed Acyclic Graph for Temporally Lagged Spatial Lags.



Drolc/Gandrud/Williams: Taking Time (and Space) Seriously� 15

Ta
b

le
 2

. 
M

on
te

 C
ar

lo
 E

vi
d

en
ce

 o
f T

L
SL

 F
al

se
 D

is
co

ve
ry

 R
at

es
 (F

D
R

) A
cr

os
s 

Fi
ve

 S
ce

na
ri

os

Sc
en

ar
io

 N
um

be
r

D
es

cr
ip

ti
on

D
at

a-
G

en
er

at
in

g 
Pr

oc
es

s
E

st
im

at
ed

 M
od

el
s

Fa
ls

e 
D

is
co

ve
ry

 R
at

e

U
nd

er
O

ve
r

1
C

on
tr

ol
Y
t
=
�
+
β
1
X

1
+
β
2
X

2
+
ϵ

Y
t
=
�
+
β
1
X

1
+
θ
W
Y
t−

1
0.

05
0.

05
2

O
m

it
te

d
 a

ut
or

eg
re

ss
iv

e 
co

va
ri

at
e

Y
t
=
�
+
β
1
X

1
+
β
2
X
A
R
+
ϵ

Y
t
=
�
+
β
1
X

1
+
θ
W
Y
t−

1
0.

28
0.

05
3

O
m

it
te

d
 s

pa
ti

al
-x

 (X
)

Y
t
=
�
+
β
1
X

1
+
θ
W
Z
X
W
Z
+
ϵ

Y
t
=
�
+
β
1
X

1
+
θ
W
Y
t−

1
0.

49
0.

04
4

O
m

it
te

d
 a

ut
or

eg
re

ss
iv

e 
D

V
Y
t
=
�
+
β
1
X

1
+
β
2
X

2
+
ϕ
Y
t−

1
+
ϵ

Y
t
=
�
+
β
1
X

1
+
β
2
X

2
+
θ
W
Y
t−

1
0.

33
0.

06
5

O
m

it
te

d
 A

R
 D

V,
 s

pa
ti

al
-x

 (X
)

Y
t
=
�
+
β
1
X

1
+
θ
W
Z
X
W
Z
+
ϕ
Y
t−

1
+
ϵ

Y
t
=
�
+
β
1
X

1
+
θ
W
Y
t−

1
0.

39
0.

04

N
ot

e:
 B

ol
d

 ty
pe

 h
ig

hl
ig

ht
s 

re
su

lt
s 

th
at

 s
ub

st
an

ti
al

ly
 e

xc
ee

d
 th

e 
ex

pe
ct

ed
 F

D
R

 o
f 5

 p
er

ce
nt

.



16� Policy Studies Journal, 0:0

The first scenario in Table 2 can be thought of as a control in that it examines the 
effect of including a TLSL when the DGP does not include autoregressive or spa-
tially clustered variables. Since scholars very rarely knowingly omit relevant covari-
ates, this is often the DGP that researchers implicitly assume when using a TLSL 
variable. Scenarios two through five in Table 2 correspond to the DGPs in Figure 1. 
They reveal the consequences of omitting autoregressive and/or spatially clustered 
variables in models with unnecessary TLSLs.11  The intuition behind these inferen-
tial problems is straight forward: imagine some policy where all observations inde-
pendently alter the policy in an incremental and positive manner; if scholars neglect 
this incrementalism by omitting the lagged dependent variable, then controlling for 
the weighted average of neighbors’ policies would give the false impression of a 
diffusion process. In reality, they are all acting independently based on their own 
policy histories. Likewise, neglecting any shock that influences all the observations 
in a neighborhood similarly will give the impression of policy diffusion. Keep in 
mind that the TLSL is not part of the DGP for any of the five scenarios, so retrieving 
a statistically significant coefficient is evidence of a spurious TLSL.

All of the models include an intercept with α = 1. The covariates are drawn from 
uniform distributions (X1), normal distributions (X2 and Z), or based on an autore-
gressive process (XAR), and the error term is normally distributed with mean 0 and 
variance equal to 1. Z is used in Scenarios 3 and 5 to generate a spatially clustered 
covariate XWZ, specifically:

where Z is a vector of individual, non–spatially clustered components for each time 
point t and e is an error term. For each observation i and other observations j, wij 
is from W, an N × N matrix of Euclidean distances between all ij dyads based on 
each observation’s “location.” Locations were drawn from 

(
0,1

)
. The connectiv-

ity between the i and j is treated as symmetrical and undirected (see Neumayer & 
Plümper, 2010, for more details) and is not row-standardized. We use θWZ to denote 
the coefficient estimated for this variable. The parameters for the various DGPs are 
initially set to �1=2, �2=3, � = 0.6, and �WZ = 0.001. Later we vary � and θWZ to 
examine how the strength of the autoregression and spatial clustering impacts TLSL 
false identification.

In all of the experiments, we included a TLSL in the regressions that was not part 
of the data-generating process. The TLSL was created for each observation i given 
other observation j at time t:

We used the same W weighting matrix to create the TLSL as we used in the DGP 
for XWZ. In each scenario, we made 100 draws for 100 units over 100 time points per 
unit following a two-period burn-in.12 

(16)XWZ=
∑

j
wijzjt+e

(17)WYt−1=
∑

j
wijyjt−1
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We first look for a specific Type-I error, which in this case is evidence in favor 
of rejecting the null hypothesis of no temporally  lagged spatial diffusion process 
(the null hypothesis is actually true). We define the false discovery rate (FDR) as the 
proportion of simulations where the p value for the estimated TLSL θWYt−1 coefficient 
was p < 0.05. The second-to-last column of Table 2 shows the FDR of the TLSL in the 
Monte Carlo experiments for the underfitted model in all five scenarios. A clear pat-
tern arises from these experiments that should be concerning for scholars studying 
spatial processes; in all of the models that omitted autoregressive and/or spatially 
clustered covariates that were part of the DGP (Scenarios 2–5), the TLSL false dis-
covery rate was much higher than expected. In these scenarios, the FDR ranges from 
about 0.28 for the scenario with an omitted autoregressive covariate to almost 0.50 
for the scenario with an omitted spatially clustered covariate. If the researcher has 
omitted an autoregressive or spatially clustered covariate, there is a reasonably high 
risk of discovering a spurious TLSL.

As revealing as those FDR patterns are in Table 2, they are specific to a unique 
set of parameters and conditions. The DAGs in Figure 1 suggest that the degree of 
autocorrelation and spatial clustering in the covariate that is part of the DGP could 
inflate the TLSL false discovery rate. To explore this, we ran further simulations 
for Scenarios 2 and 313  varying the autoregressive term (�) and coefficient for the 
spatially clustered variable (θWZ) and show the results in Figure 2. For now, focus on 
the dashed line which shows the TLSL false discovery rate for Scenarios 2 and 3 (we 
describe the solid line below).

The TLSL false discovery rate for these models is much higher than indicated 
by its p-value, and the problem is exacerbated when the omitted covariate’s level of 
autoregression (� in Scenario 2) or spatial clustering (θWZ in Scenario 3) increases. 
The results reveal that scholars should be wary of the widespread use of TLSLs in 
models prone to misspecification. In the next section, we provide guidelines for pre-
venting these inferential errors by relying heavily on strong theoretical justification 
and a priori diagnostics.

Guidelines for Preventing TLSL Type-I Errors

The Monte Carlo experiments revealed a couple of troubling trends about 
model misspecification. When a true temporally  lagged policy diffusion does not 
exist, nearly any type of omitted relevant variable will lead to false inferences about 
diffusion. Indeed, the false discovery rate is unacceptably high across all four sce-
narios, and that rate worsens as the strength of spatial and temporal autocorrelation 
increases. It is clear that TLSLs should not be included in these situations. However, 
if one can correctly specify the rest of the model, then is it harmful to include a pos-
sibly irrelevant TLSL? The experiments suggest that the false discovery rate returns 
to acceptable rates,14  so is it advisable to include a TLSL if in doubt? We would cau-
tion against this approach (see also Gujarati, 2003, p. 514). Additional Monte Carlo 
experiments of Scenarios 2 and 3 (explored more in the supporting information) 
reveal that including a TLSL—if not in the DGP—produces bias in the estimates of � 
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(Scenario 2) and θ (Scenario 3). Furthermore, there is also the risk of bias to the other 
covariates depending on the particular scenario. It is clear, then, that there is an in-
ferential penalty associated with this attempt to prevent false TLSLs.

The simplest solution is also perhaps the least helpful in practice: specify the 
correct model. This guidance is of little practical use because in reality research-
ers do not know the data-generating process ex ante. Even under the best possible 
conditions where scholars know which variables to include, it may not be practical 
or possible to observe all relevant autocorrelated and spatially clustered variables. 
Thus, we are left with two troubling facts about applied policy diffusion research. 
First, the conditions that lead to falsely identifying TLSL at high rates are endemic to 
political science research and second, they are not easily addressed within standard 
regression modeling frameworks. How can researchers avoid false evidence of dif-
fusion (by omitting a relevant variable), and avoid biasing the other coefficients (by 
including an irrelevant TLSL to an otherwise well-specified model)?

We offer guidelines for scholars to use when confronting the inherent difficulty 
in properly specifying policy processes across time and space. The first guideline 
is that theory should motivate all of the decisions about model specification. In the 
study of policy diffusion, scholars typically want to explain why some governments’ 
policies converge while others do not. A reasonable starting place is to posit a diffu-
sion process where governments learn from and emulate others, so that over time 
their policies converge. In their efforts to hone in on diffusion, there is a chance 
that scholars neglect the multitude of alternative pathways (as shown in Figure 1) 
that could also produce policy convergence. Scholars must therefore think carefully 
about these pathways and lean heavily on their theories to eliminate possibilities. If 
they are unable to envision a diffusion process operating outside of a government’s 
own policy trajectory, common shocks in a region, or some combination of both, 
then the TLSL might be unnecessary. Careful theorizing can therefore help scholars 
steer clear of a variety of specification issues.

Even if the empirical model is on solid theoretical foundations, the possibility of 
the types of model misspecification described above remain. Our second guideline is 
to follow Darmofal’s (2015, p. 69) advice and trust but verify. In this context, it means 
using one’s theory as a starting point to gain insight about the preliminary model 
but then determining the appropriate specification through diagnostic tests. Most 
econometrics textbooks devote considerable space to the sources, consequences of, 
and tests for model specification errors (e.g., Gujarati, 2003, Chapter 13), and others 
have explored these issues in time series (Achen, 2000; deBoef & Keele, 2008; Keele 
& Kelly, 2006) and spatial models (Darmofal, 2015; Neumayer & Plümper, 2010), so 
we focus on specification issues related to models with TLSLs. Following Darmofal 
(2015), we advocate a simple test (such as Moran’s I, Geary’s c, or join count analy-
sis15 ) to determine if there is enough evidence of spatial clustering to require a TLSL. 
For time series cross-sectional data, one can test for spatial autocorrelation at each 
observed time point. It may be that a series is spatially correlated for one set of time 
points but not for another. For example, falling transportation costs over an obser-
vation period could make contact between governments more frequent later in the 
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period and spread an innovation across space more frequently. Such a pattern would 
result in spatial autocorrelation in the adoption of the innovation later in the obser-
vation period, where there had not been one earlier. This could easily be accounted 
for in a regression analysis by interacting a TLSL by some indicator of time that 
was supported by the repeated Moran’s I test. If tests of spatial clustering do not 
indicate that a TLSL is spatially autocorrelated, then there is not a justification for 
including the TLSL in the regression model and including it might lead to incorrect 
conclusions.

How well does our proposed solution do in preventing the false discovery of 
diffusion processes? The solid line in Figure 2 shows the false discovery rate for 
spatial clustering in the TLSL for Scenarios 2 and 3 across the strength of temporal 
(�) and spatial autocorrelation (θ). Recall that the false discovery rate is defined as 
the proportion of simulations with p-values for Moran’s I less than 0.05. In both 
cases, Moran’s I consistently has an expected false discovery rate of approximately 
5 percent across values of temporal and spatial autocorrelation. This buttresses our 
claim that the Moran’s I can be used to determine if there is spatial autocorrelation 
in the TLSL and that the absence of evidence for spatial clustering should dissuade 
scholars from its inclusion. We therefore advocate a two-step process based on care-
ful theorizing and specification diagnostics.

Applications

This section offers a departure from traditional methodological studies. Common 
practice would be to identify a prominent study or two that resulted in inappropriate 
uses of TLSLs. As a practical consideration, this is difficult because scholars rarely 
provide the materials needed to identify inappropriate uses of TLSLs. Replication 
materials are still not required at some journals, and certainly scholars have not 
shown a willingness to provide the data and script files used to generate TLSLs (most 
notably, the weights matrix), which are necessary for the tests described above. The 
result is a systematic lack of transparency needed for third parties to conduct stress 
tests on models of policy diffusion.

Instead, we highlight three appropriate uses (or non-uses) of TLSLs. The first two 
examples show how easily one would find a spurious TLSL in real-world data with 
some minor changes to a well-specified model. The third example demonstrates 
how scholars choose to include TLSLs in their model in practice, which we extend 
with an example for presenting spatial long-term effects. The insights from three 
examples echo the conclusions of the simulations and show that the risk of spurious 
TLSLs is quite high in all but the most completely specified models.

Lipsmeyer and Zhu (2011)

The first example comes from Lipsmeyer and Zhu’s (2011) analysis of the effects 
of immigration on unemployment benefits in 15 EU member states from 1971 to 
2007, and more specifically, how domestic political institutions and labor market 
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integration condition those effects. The authors include three interactive variables 
to measure how changes in economic integration, union density, and the percentage 
of left-wing parliamentary seats condition states’ responses to immigration flows. 
In addition to some economic control variables (such as changes in GDP, unem-
ployment, trade, and FDI), the authors include the lagged value of unemployment 
entitlement (i.e., a lagged dependent variable).16  In Table 3, we successfully replicate 
the authors’ model (Table 1, page 654). The empirical results “suggest that EU inte-
grative forces demonstrate less of an impact on unemployment entitlements than 
domestic political forces” (Lipsmeyer & Zhu, 2011, p. 660).

For all intents and purposes, this appears to be a well-specified model with 
no obvious omitted variables. What happens if we slightly alter the model spec-
ification by first, including an unnecessary TLSL, and then second, omitting the 
relevant lagged dependent variable? The TLSL coefficient in Model 1 (Table 3) is 
not statistically different from zero, which suggests that there are no spatial spill-
overs among EU member nations.17  In Model 2, we purposely exclude the lagged 

Table 3.  Replication of Lipsmeyer and Zhu (2011)

  Replication Model 1 Model 2

Entitlementt−1 (�) 0.890**  0.899**   
(0.019) (0.021)  

TLSL (θ)   −0.025 0.277** 
  (0.027) (0.083)

∆ Immigration −0.250 −0.257 −0.156
(0.169) (0.171) (0.197)

∆ Integration 1.921 2.063 −0.072
(1.984) (2.012) (2.608)

Union densityt−1 −2.612 −2.928*  −12.393** 
(1.653) (1.654) (4.773)

Left seatst−1 0.011 0.012 −0.02
(0.012) (0.012) (0.024)

∆ Immigration × ∆ Integration −0.417 −0.418 0.563
(0.941) (0.948) (1.187)

Immigration × Union densityt−1 0.385 0.388 0.231
(0.260) (0.262) (0.287)

∆ Immigration × Left seatst−1 0.004*  0.004*  0.003
(0.002) (0.002) (0.003)

∆ GDP −0.0001 −0.0001 −0.00001
(0.0002) (0.0002) (0.0003)

∆ Unemployment −0.125 −0.122 −0.163
(0.083) (0.082) (0.123)

∆ Trade 0.004 0.003 −0.0003
(0.014) (0.014) (0.02)

∆ FDI −0.071*  −0.072 −0.036
(0.043) (0.044) (0.063)

Intercept 3.988**  4.487**  25.832** 
(1.100) (1.141) (3.701)

N 496 496 496
ρ 0.414 0.389 0.808
R2 0.961 0.964 0.569

Note: OLS regression with panel-corrected standard errors and an AR(1) correction.
*p < 0.10,**p < 0.05.
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dependent variable to observe how our inferences regarding the TLSL change. The 
θ coefficient for the TLSL is now highly significant and positive, which suggests that 
countries respond positively to other EU member nations’ unemployment benefits. 
Additionally, the key finding of interactive effects between changes in immigration 
and left-wing seats disappears.

Making the reasonable—but completely unnecessary—change to the model 
specification in the form of removing the lagged dependent variable in exchange for 
the TLSL results in incorrect inferences regarding spatial diffusion. Model 2 essen-
tially trades long-term direct effects for long-term indirect effects. In the replication 
model, the covariates operate through the �; a change in xi has a short- and long-
term effect on yi (as shown on page 660). In Model 2, the inclusion of the TLSL means 
that the covariate operates through both time and space; a change in xi has only a 
short-term direct effect on yi (depicted by the coefficient for x), but has a spatial effect 
on yj (i’s first-order neighbors) at time t + 1, another spatial effect on yk (j’s first-order 
neighbors, or i’s second-order neighbors) at time t + 2, and so on. Thus, the differ-
ence between models with a lagged dependent variable (replication model) and a 
TLSL (Model 2) is quite large and has meaningful consequences for the inferences 
derived from the model. In this example, tests suggest that the authors’ specification 
is more appropriate, which points to the spatial long-term effects found in Model 2 
being the result of a spurious TLSL.

Hollyer, Rosendorff, and Vreeland (2011)

Hollyer, Rosendorff, and Vreeland (2011) examine whether electoral politics 
provide incentives for leaders to be more transparent. The authors develop a new 
measure of transparency for 188 countries from 1961 to 2007 based on “a govern-
ment’s willingness to disseminate policy-relevant data” and demonstrate that de-
mocracies are in fact more transparent. The authors’ model is parsimonious and is 
intended to control for the confounding effects of wealth and participation in IMF 
programs (1199) and possible concerns about unmodeled country-specific variation 
(with fixed effects) and the passage of time (with cubic polynomials). In Table 4, we 
successfully replicate Model 6 (Table 3, p. 1201). As theorized, the measure of de-
mocracy based on the Polity index is statistically significant and positive, indicating 
that democracies provide more data.

In the next specification, we incorporate a TLSL based on a row-standardized 
binary weights matrix where every observation is coded as a neighbor. There are no 
obvious reasons why governments’ decisions about making data available would be 
spatially clustered. Indeed, in Model 1, the coefficient for the TLSL is not statistically 
significant at conventional levels, indicating that there is no evidence of a tempo-
rally lagged diffusion process.

The next two models, however, demonstrate that minor changes to the model 
specification can change this conclusion through spurious TLSLs. In Model 2, we 
exclude the cubic polynomials that control for the trend toward increased transpar-
ency over time. Since these are simple counters that are based on the number of years 
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since 1958, it is clear that they are representative of Scenario 2 in the Monte Carlo 
experiments (omitted autoregressive covariate). In Model 3, we exclude the measure 
of wealth (GDP per capita). We know that countries’ levels of wealth are likely to be 
spatially clustered for a variety of reasons (e.g., Krieckhaus, 2006), so this situation 
mimics Scenario 3 in the Monte Carlo experiments (omitted spatial-X). In both mod-
els, the TLSL coefficient is positive and statistically significant, which is consistent 
with patterns of spurious TLSLs in the Monte Carlo simulations. Essentially, one 
could falsely infer from these models that data dissemination policies are driven by 
neighboring countries’ policies.

In addition to the shift in the meaning of the effects detailed in the previous 
example, there is a substantial risk of falsely concluding that democracy has no effect 
on transparency. In Model 2, the coefficient for democracy is closer to zero and not 
statistically significant. Moreover, based on the statistically significant coefficient for 
the TLSL, scholars are likely to incorrectly infer that the process of disseminating 
data contains a positive spatial pattern. Keep in mind that the two modifications to 
model specification that produced these changes at first appeared minor and rela-
tively innocuous, but their inferential consequences are quite severe.

Gilardi and Wasserfallen (2016)

In the final example, we identified a notable study of policy diffusion that pro-
ceeded in a manner consistent with our guidelines by testing for spatial autocor-
relation with Moran’s I and then presenting a fully specified model that takes into 
account spatial and temporal dynamics. Gilardi and Wasserfallen’s (2016) analysis of 
the effects of socialization on tax competition in the 16 Swiss cantons between 1990 

Table 4.  Replication of Hollyer et al. (2011)

  Replication Model 1 Model 2 Model 3

TLSL (θ)   0.215 0.892***  0.237* 
(0.133) (0.041) (0.134)

Polity 2 0.003**  0.003**  0.002 0.004** 
(0.002) (0.002) (0.002) (0.002)

GDP per capita 0.0002 0.0003 0.0002  
(0.001) (0.001) (0.001)

Under IMF 0.054***  0.053***  0.052***  0.058*** 
(0.0128) (0.0129) (0.013) (0.014)

Time 0.029***  0.028***    0.026*** 
(0.005) (0.006) (0.005)

Time2 −0.0003*  −0.0005**  −0.0004** 
(0.0002) (0.0002) (0.0002)

Time3 −0.0000 0.0000 0.0000
(0.0000) (0.0000) (0.0000)

Intercept 0.266***  0.183***  0.104***  0.187*** 
(0.028) (0.049) (0.027) (0.047)

N 5,566 5,451 5,451 5,610
R2 0.329 0.318 0.305 0.367

Note: OLS regression with standard errors clustered by country.
*p < 0.10,**p < 0.05,***p < 0.01.
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and 2007 is a perfect example of the thoughtful use of TLSLs. The authors start with 
simple geographic specifications of the interconnectivities within the Swiss federal 
system (contiguity) and then proceed to more nuanced specifications (commuters, 
membership in regional conferences). They then multiply these weights matrices by 
tax rates in the previous year to test their conditional hypotheses of socialization of 
tax competition.

Their project offers some guidance as to how to proceed with TLSLs in a vari-
ety of respects. First, the authors derive clear expectations for why tax competition 
occurs with a one-year lag (thus justifying the TLSL instead of a concurrent lag) 
based on important anecdotal examples (Gilardi & Wasserfallen, 2016, pp. 48–49). 
Second, the authors use Moran’s I as a starting point to illustrate how the degree 
of spatial autocorrelation varies across cantons by tax rate. Deeper analysis of all 
models reveals clear patterns of spatial autocorrelation.18  Third, the authors present 
a complete model specification that incorporates unobserved heterogeneity at both 
the government level (via canton- and region-specific fixed effects) and across time 
(via year fixed effects).

If there is one weakness of the manuscript, it is in the form of a missed opportu-
nity. Because there are no quantities of interest provided, the readers are unable to 
explore how the explanatory variables influence tax rates through spatial long-term 
effects. We now demonstrate two quantities of interest from Models 1–5 in Gilardi 
and Wasserfallen (2016, pp. 48–49) that are easy to calculate and quite revealing. 
Table 5 calculates the average total, direct, and indirect spatial long-term effects 
(based on equation [15]) for a one standard deviation increase in the two variables 
that are statistically significant in some models: deficit per capita and unemployment 
rate. Indirect effects represent the effect of the increase in observation i on all other 
observations, and direct effects represent feedback effects. All observations have the 
identical direct effect at time t; since this is β for all i, the direct effects in Table 5 only 
depict the feedback effects. We calculate 95 percent confidence intervals using the 
percentile method based on 1,000 draws from the multivariate normal distribution 
implied by the model.

Displaying the average direct and indirect spatial long-term effects in this man-
ner can help illuminate the amount of the total effect that arises due to feedback. 
For both variables in most models, feedback effects make up less than a tenth of the 
total spatial long-term effects. Table 5 displays additional evidence in favor of care-
fully specifying weights matrices based on theoretical motivations (see Neumayer & 
Plümper, 2016). The size and statistical significance of the effect sizes varies a great 
deal across the five models. Most notably, the average total spatial long-term effect 
of the unemployment rate is nearly 10 times as large in Model 5 (−0.208) compared 
to Model 4 (−0.021), though it is not statistically significant in Model 4. The various 
weights matrices used by Gilardi and Wasserfallen (2016) are all quite reasonable yet 
lead to substantially different effect sizes. Without carefully considering the speci-
fication, scholars are liable to make different inferences due to small changes in the 
weights matrix.

While the spatial long-term effects shown in Table 5 provide a sense of the aver-
age total effect, it ignores a great deal of variation that may be of interest to scholars. 
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In Figure 3, we demonstrate how a shock to the deficit (a one standard deviation 
increase to deficit per capita) in Berne diffuses over time to influence the other can-
tons, as well as itself (based on the “not in the same conference” weights matrix in 
Model 5).

At time t, a .057 increase deficit per capita leads to a .049 increase in the tax rate for 
an annual income of CHF 150,000 in Berne (i.e., β = 0.867, so 0.867 × 0.057 = 0.049). 
In the next year (t + 1), those cantons that are not in the same regional conference 
(i.e., first-order neighbors) respond positively to Berne’s increase in the deficit. The 
size of the responses (darker shades mean larger effects) is a function of how many 
other neighbors each canton has; the canton of Jura in the northeast experiences the 
largest impulse at time t + 1. In the second year (t + 2), Berne experiences the largest 
effect because it now competes with its first-order neighbors in the previous year. 
These are the feedback effects that are in the “Direct” column of Table 5. The final 
panel (t + 3) shows that Berne’s deficit shock expands out to almost all of the can-
tons within the network through higher-order connections, though with the caveat 
that the effects quickly become quite small. These two methods demonstrate how to 
make inferences about the spatial and temporal dynamics at work in models with 
TLSLs, both on average (see Table 5) and as counterfactual scenarios (see Figure 3).

Table 5.  Average Total, Direct, and Indirect Spatial Long-Term Effects (t = 15) in Models 1-5 of Gilardi 
and Wasserfallen (2016)

  Total Direct Indirect

Model 1: Neighbors
Deficit per capita 0.022 0.001 0.020
∆ = +0.057 [−0.006, 0.067] [−0.0004, 0.005] [−0.005, 0.062]
Unemployment −0.062 −0.004 −0.058
∆ = +1.738 [−0.185, 0.024] [−0.014, 0.002] [−0.171, 0.023]
Model 2: Commuters
Deficit per capita 0.017*  0.001*  0.016* 
∆ = +0.057 [−0.0008, 0.052] [−0.00003, 0.003] [−0.0008, 0.049]
Unemployment −0.045 −0.002 −0.043
∆ = +1.738 [−0.150, 0.013] [−0.010, 0.0007] [−0.140, 0.012]
Model 3: Cantons not in same conference
Deficit per capita 0.043**  0.002**  0.041** 
∆ = +0.057 [0.002, 0.129] [0.0001, 0.007] [0.002, 0.122]
Unemployment −0.110*  −0.005*  −0.105* 
∆ = +1.738 [−0.358, 0.016] [−0.019, 0.0008] [−0.339, 0.016]
Model 4: Cantons in same conference
Deficit per capita 0.008 0.0003 0.007
∆ = +0.057 [−0.002, 0.028] [−0.00002, 0.002] [−0.002, 0.026]
Unemployment −0.021 −0.001 −0.020
∆ = +1.738 [−0.081, 0.009] [−0.005, 0.0003] [−0.076, 0.009]
Model 5: Cantons in and not in same conference
Deficit per capita 0.070**  0.004**  0.066* 
∆ = +0.057 [0.0002, 0.231] [0.00001, 0.014] [0.0002, 0.217]
Unemployment −0.208*  −0.013*  −0.196* 
∆ = +1.738 [−0.582, −0.021] [−0.044, 0.0003] [−0.702, 0.005]

Note: Changes reflect one-standard deviation increase; Ws in models 2–5 are from 2000 (see Gilardi & 
Wasserfallen, 2016, p. 56).
*p < 0.1, **p < 0.05.
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Conclusion

Policy diffusion scholars interested in how governments learn from their 
neighbors often examine an implicitly spatial process without recognizing it. To 
empirically model diffusion, scholars often utilize the weighted sum (or average) 
of the outcomes in a government’s neighborhood. The intuition is that this tempo-
rally lagged spatial lag, or TLSL, will capture spatial diffusion processes that occur 
over time. In practice, however, the benefits of TLSLs come with the costs of greater 
confusion about the exact process being modeled, difficulty in interpreting effects, 

Figure 3.  Spatial Long Term Effects of a One Standard Deviation Increase in Deficits Per Capita in Berne 
at Time t on Other Swiss Cantons (Model 5). 
Note: Estimates are based on the weights matrix capturing cantons not in the same regional conference. 
Darker shades represent larger effects.



Drolc/Gandrud/Williams: Taking Time (and Space) Seriously� 27

and a greater risk of model misspecification. We offer insight to guide scholars so 
that they select the appropriate empirical approach for their theory, hone in on the 
correct model specification, and fully interpret the effects across time and space.

First, we argue that dyadic EHA and spatial models offer two pictures of policy 
diffusion processes. Though both share some critical features (such as linking the 
observations across space), they depict substantively different spatial diffusion pro-
cesses. We then provided guidance as to when one approach is more appropriate 
than the other. Unfortunately, our survey of the policy diffusion literature suggested 
that there is often a large disconnect between one’s theory and the empirical tests 
and a considerable amount of notational confusion. Indeed, the survey suggests that 
scholars should be more diligent in their efforts to select an empirical model that is 
consistent with their theory.

Second, this project is the first that we know of to demonstrate the correct inter-
pretation of the other covariates in the context of TLSLs. Scholars estimate models 
with TLSLs as a way of controlling for other observations’ outcomes in the past, so 
it makes sense that any variable that affects these outcomes will also have a lasting 
effect. We call these effects spatial long-term effects and demonstrate how to calculate 
them as well as simple summary statistics. We hope that these tools will empower 
scholars to explore their diffusion models in deeper and more thought-provoking 
ways.

Third, our experiments have shown that there are multiple conditions that can 
lead to false inferences of spatial diffusion in TLSL models. These conditions are 
widespread, and occur when the model omits an autoregressive covariate, a spa-
tially  autocorrelated covariate, an autoregressive lagged dependent variable, or 
any combination thereof. When the omitted variables are included in the model 
alongside an irrelevant TLSL, the false discovery rate is reduced to the proper level, 
but bias can be introduced into the coefficients. To avoid these problems, we offer 
simple guidelines for specifying models with TLSLs: first, use theory to eliminate 
alternative pathways, and if necessary, control for them in the model; and second, 
use the appropriate specification diagnostics to confirm your choice of specification. 
Indeed, our findings strongly support the conclusion that researchers should only 
include TLSLs when there is evidence of spatial clustering, as given by a test such 
as Moran’s I. We are introducing a new software package for the R programming 
language–spatialWeights19 –to make it easy for researchers to both create spatial 
weights and test for spatial clustering in TSCS data. We describe this package and 
provide an example in the supporting information.

While we draw insights from the policy diffusion literature, our methodological 
recommendations apply to other diffusion process where TLSLs are theoretically 
appropriate, such as the dispersion of governing structures (e.g., Houle, Kayser, 
& Xiang, 2016; Miller, 2016), tax and regulatory structures (e.g., Baccini & Koenig-
Archibugi, 2014; Fink, 2011; Jordana et al., 2011), or conflict (e.g., Buhaug & Gleditsch, 
2008; Siverson & Starr, 1990). Moving forward, scholars should pay careful attention 
to how both temporal and spatial processes influence diffusion.
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		 1.	 This finding builds upon those in Bellemare, Masaki, and Pepinsky (2017). They examined the ef-
fects of lagged, but not spatially weighted, dependent variables in regression models when there are 
causal dynamics among unobservables.

		 2.	 Scholars should be aware that the relational nature of the dependent variable raises the possibility of 
“emulation bias” (Boehmke, 2009b).

		 3.	 Of course, some observations may not be connected to any other observations. These are called iso-
lates and they are completely unaffected by spatial dependence.

		 4.	 We end up at equation (2) by moving all the terms that involve y to the left-hand side and then solv-
ing for y (see Ward & Gleditsch, 2008, pp. 44–45 for more detail).

		 5.	 The SLX is much more flexible than the SAR model in specifying conditional spatial dependence and 
spatial heterogeneity (Wimpy et al., forthcoming). One can specify different patterns of connections 
(W) for different variables, and easily produce interactions to test expectations of conditional spatial 
dependence.

		 6.	 For an in-depth discussion of the consequences of row-standardizing weights matrices, see Neumayer 
and Plümper (2016).

		 7.	 In the supporting information Appendix, we provide additional Monte Carlo experiments that 
explore the consequences of two types of model misspecification when the true process operates 
through multiple avenues: first, omitting a relevant avenue, and second, incorrectly specifying the 
diffusion avenue. The first type will most likely lead to bias in the estimate of the included diffusion 
avenue (since it will probably be correlated with the omitted avenue), and the second type produces 
unacceptably high false discovery rates. These results show that scholars must carefully consider 
whether policy convergence is the result of multiple avenues of spatial diffusion, and if so, properly 
model those avenues.

		 8.	 This is analogous to the debate over whether to row-standardize the weights matrix in spatial econo-
metric models (Neumayer & Plümper, 2010).

		 9.	 If the dependent variable is a discrete event (such as adoption), then the spatial long-term effects are 
probabilistic. Changing future values of the percentage of previous adopters involves classifying the 
outcome based on the probability that yt = 1 (see Williams, 2016).

	10.	 See Darmofal (2015) and the following sections for discussion of why this is important.

	11.	 Gujarati (2003) would refer to this specification problem as an “underfitted” model that also includes 
an irrelevant variable (TLSL).

	12.	 We found that the results did not substantively change with more simulations.

	13.	 The other TLSL scenarios are variations on these two.
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	14.	 In the last column of Table 2, we show that correctly specifying the other parts of the model (“Over”) 
returns the FDR to acceptable levels.

	15.	 Moran’s I is generally preferred as Geary’s c gives greater weight to extreme values (see Cliff & Ord, 

1981, pp. 14–15). Moran’s I is a measure of spatial (dis)similarity I= N
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)2 , where N is the 

number of observations, S is the sum of the weights, wij is an element of W. yi and yj are the values of 
the random variable at locations i and j. 

−
y is the mean y. A Moran’s I test statistic with a p value below 

an accepted value, such as p < 0.05, suggests evidence against the null hypothesis of spatial random-
ness. Join count analysis can be used when the data are dichotomous (see Chapter 4 of Darmofal, 
2015, for more details).

	16.	 The use of a lagged dependent variable is quite common in public policy research and makes sense 
here because the authors “assume a path-dependent process whereby the lagged dependent variable 
controls for the level of entitlements in the previous year” (Lipsmeyer & Zhu, 2011, p. 654).

	17.	 We use a row-standardized binary weights matrix where all EU member nations are neighbors.

	18.	 With few exceptions, the Moran’s I is statistically significant (at least at the 90 percent confidence 
level) for each year and each model presented in Table 3 (Gilardi & Wasserfallen, 2016, p. 58).

	19.	 Available for download from: https​://github.com/chris​tophe​rgand​rud/spati​alWei​ghts.
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